EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
SOLUTIONS: Series 4 General Relativity 2 Oct. 2024

4.1 Let M™ be a differentiable manifold.
(a) Show that, for any X,Y,Z € ['(M):
ﬁ[ny}Z - ﬁXﬁyz - ,CY,C)(Z.

Show that the above relation also holds when Z is replaced by any tensor field f of type
(k,1), k,l € N. (Hint: Check how Lx behaves on tensor products of the form f1 ® fs.)

(b) Show that the space K of Killing vector fields on (M, g) is closed under commutation, i.e.
that [X,Y] € K if X, Y € K; thus, K forms a Lie subalgebra of I'(M).

(¢) Let g be a Lorentzian metric on M. Let X be a Killing field on (M, g). Show also that,
for any VW € I'( M):
g(VvX, W) +g(VwX,V) =0,

where V denotes the Levi-Civita connection associated to g (recall that V is torsion-free
and satisfies Vxg = 0 for all X € I'(M).) (Hint: Apply the product rule on the expression
X(g(Y,2)) = Lx(g(Y,2)) for suitably chosen vector fields Y, Z.)

Solution. (a) Using the formula £xY = [X,Y] holding for any X,Y € I'(M), we can readily
calculate that the relation
,C[va}Z = EXﬁyz — ,Cyﬁxz

is equivalent to the statement that

which, after rearranging the terms and using the anti-symmetry of [-, -] in its arguments, is equivalent

to
[X. Y], Z] + [[X,Y],Z] + [[X,Y], Z] = 0.

The above is just Jacobi’s identity.
Using the fact that, for any 1-form w and any X,Y € I'(M), the Lie derivative Lxw satisfies

X(w(Y)) = Lxw(Y) +w(LxY),

we can compute:

Lxw(Y)=X(w))—w([X,Y]).
Therefore, we can readily calculate for any XY, Z € T'(M)

ﬁx(ﬁyw)(Z) = X(,Cth(Z)) — ,Cyw([X, Z])
= X(Y(w(2)) —w([Y; 2))) = Y (w([X, 2)) +w([Y, [X, 2]))
= X(Y (@(2)) = X (@([Y, 2))) = Y (w(1X, 2D)) +w([Y; [X, 21))

and, after switching the roles of X, Y
Ly(Lxw)(Z) =Y (X (w(Z))) = Y (w([X, Z2])) — X (w([Y. 2])) +w([X,[Y. Z]]).
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Subtracting the above relations (noting that the second and third term in each right hand side cancel
out), we obtain

Lx(Lyw)(Z) = Ly (Lxw)(Z) = [X,Y](w(Z2)) + w([Y, [X, 2] - [X,[Y, 2]])
= [X,Y](w(2)) —w([[X,Y], Z])
= (Lixyw)(2)

(where, in passing from the second to the third line above, we used Jacobi’s identity). Since the
above relation is true for any Z € I'(M), we infer that

ﬁ[)gy]w = £X£yw — Eyﬁxw.
In order to prove that the same relation holds for any tensor field T, i.e.
Lixy)T = LxLyT — Ly LxT, (1)

we can argue inductively on the type of T: If the formula is true for all tensor fields of type (k,1),
then (due to linearity) (1) will also be true for all tensor fields of type (k+1,1) if it’s true for tensors
of the form

T=T®V,

where T is of type (k,1) and V € T'(M) (we get the same statement for tensor fields of type (k,[+1)
if we replace V' with w € I'*(M)). Using the formula

LxT=LxTQV+T®LXV,

verifying (1) using that it is true for T and V is a simple algebraic exercise. Similarly when V is
replaced with w € I'*(M).

(b) If X,Y € K, then Lxg = Lyg = 0. Using the commutator formula from part (a) of this
exercise, we calculate

Lixyig = Lx(Lyg) — Ly(Lxg) =0—0=0.
(¢) We will compute the expression X (g(V,W)) in two different ways:

e Thinking in terms of the Lie derivative in the direction of X and using the fact that Lx(f®h) =
Lxf®h+ f®Lxh and that £y commutes with contractions, we obtain

X(g(V,W)) =(Lxg) (VW) + g(LxV, W) + g(V,LxW)
=0+ g([X, V], W) + g(V,[X,W])

(note that we used our assumption that Lxg = 0).

e Thinking in terms of the covariant derivative Vx, we have

X(g(V,W)) = g(VxV.W) + g(V,VxW).

Page 2



EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
SOLUTIONS: Series 4 General Relativity 2 Oct. 2024

Combining the above relations, we obtain that the corresponding right hand sides must be equal to
each other; using, in addition, the fact that the Levi-Civita connection V is torsion-free, i.e.

VxY —-Vy X - [X,Y]=0
we obtain:

9(VxVi W) +g(V,VxW) = g([X, V], W) + g (V. [X, W])
=g(VxV.W) —g(Vv X, W) +g(V,VxW) — g(V,VwX),

le.:

4.2 (a) Let F': (R"™,n) — (R"*! ) be an isometry of Minkowski spacetime. Show that, with respect
to the Cartesian coordinate system (z°,...,2") on R"™ the differential dF satisfies at every
xr € R
N 0o F" ()0 F" () = Thap.
Deduce that F'is an affine isometry, i.e. takes the form F(x) = Ax + b. (Hint: Differentiate

the above relation.)

(b) Let t — F; : (R"™',n) — (R""',n) be a l-parameter group of isometries. Prove that the
generator of {F}}icr, namely the vector field

o d
r— X|, = %Ft(x) o

is affine, i.e. is of the form
XH*(x) = Abz” + b

for some constants A%, b*. Show also that the matrix A% satisfies
UWAZ + npu Ay = 0. (3)
What is the dimension of the Lie algebra of Killing vector fields on (R"*! n)?

(c) Can you similarly classify all conformal Killing vector fields on (R"™! 7) when n > 27

(d) Show that the Lie group of isometries of the n-dimensional de Sitter space (see Exercise 2.1) has
dimension at least @ (we will later show that this is also an upper bound for the dimension

of the group of isometries of any n-dimensional Lorentzian manifold).

Solution. (a) Since F' is an isometry, the differential dF' : (T,R**',n) — (TpyR™™,n) is a linear
isometry of vector spaces. Thus, we have:

0 0 o 0

D(AF () AP (55)) = (5= 55)
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and, therefore (in view of the fact that dF(ag%) = 0, F"0,), we obtain for any a, 5 =0,...,n:
nuyaaF“aﬁF” = 77a,8~ (4)

Differentiating the above relation with respect to 0, (using the fact that the coefficients 7,45 are
constant in = and the symmetry of ), we get:

0 = 1000 F"OsF" + 1,00 F" 0,03 F"
= w0y 0 F*OsF" + 03 (1u0a F" O, F") — 1,030, F* 0, F”
= N0y 0 F* 03" + 03 (1 0a F" O, F") — 00 (1 0s F" 04 F”) + 1,05 F* 050, F”
= N0y 0a 'O F” + O (77017) — o (nﬁv) + 1O F" 000, F”
= 21),,0,0, F" O F" .
Because 7 is non-degenerate and dF is invertible (as a linear isometry), we infer that the matrix

M, = 1,0, F* (which is simply the matrix-product of the matrices [1,,] and [0,F*]) is invertible;
hence, by multiplying the above relation with N* (where N = M~!), we infer that

0,0sF* =0 for all B,7,A=0,...n.

Therefore, F* has to be an affine function, i.e. F*(x) = Aﬁx“ + b* for some constants Af; and b,
g, A =0,...,n. Note that, in this case, (dF)? = A?; hence (in view of the fact that dF is a linear
isometry), the matrix A is orthonormal with respect to 1 (i.e. belongs to the group SO(1,n)).

b) If t — F,: (R*™1,n) — (R*"! n) is an 1-parameter group of isometries, then, in view of part
Ui Ui g
a), it takes the form (in the (2°,...,2") Cartesian coordinate system):

(F)"(x) = (Copa” + ()" (5)

Differentiating' (5) with respect to ¢ and setting AY, = L(Cy)
i

that the vector field X € T'(R"*!) which is the generator of the fa}nily F,, i.e. defined at every point
reR"as X|, = %Ft(x)‘ satisfies

and b* = L(d,)"| , we obtain
¢

t=0’

XH(z) = Alz” + b, (6)

The relation (4) for F; reads
M (Ce)a(Co) = Tap-

Differentiating the above relation at ¢ = 0 and using the fact that A = £ (C;)x - and (Cp)k = ot
(since Fy(z) = z, as a consequence of the fact that F} is a 1-parameter semigroup), we obtain:

77#5145 + nauA,lf;’ = O,

which can be reexpressed (after relabelling the indices) as (3).

!The fact that F;(z) (and, as a consequence, (Cy)* and (d;)") is differentiable in ¢ follows from our assumption
that F} is an 1-parameter group of diffeomorphisms.
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Remark. Note that (3) is nothing else than the usual equation V,X, + V, X, = 0 satisfied by a
Killing vector field on a general Lorentzian manifold (M, g) (see Ex. 4.1.c).

If we define 3
Aaﬁ = nuaAga

then (3) is equivalent to the statement that fla/g is antisymmetric. As a result, A has at most ”(”+1)
degrees of freedom (as many as an antisymmetric (n + 1) X (n + 1) matrix); since A (as a matrlx)
is obtained from A by multiplication with an invertible matrix, we infer that A has at most n(ntl)
degrees of freedom too. As a result, the right hand side of (6) has at most n(”H) +n+1= w
linearly independent free parameters (corresponding to the free parameters 1n A and b) and, hence,

Wfléﬂ-dimensional. One

the space of Killing vector fields in Minkowski spacetime is at most
can verify that its dimension is exactly W by noting that the generators translations, spatial

rotations and hyperbolic rotations (boosts) form a set of % linearly independent Killing vector
fields, namely

Ta:%, CYE{O,...,?’L},
Ql-—xii—x]’ i<jed{l n}
1) T 8:1:‘] ax27 ] P )

0 .0
QOiIZL'Oaxi +$Z@, ie {1,,71}

(c) Recall that a conformally Killing vector field X on a Lorentzian manifold (M, g) satisfies

Lxg=1f-yg

for some f € C*°(M). The analogue of the Killing equation (2) then becomes (with essentially the
same derivation)

J(VyX, W)+ g(V.VxW) = f - g(V,IW) forall V,IV € C®(M).

If V, W are coordinate vector fields in a given coordinate chart (20, ..., z"), the above relation yields
(recalling our convention that
Xa = gaﬁXﬁ

and the fact that the musical isomorphism commutes with covariant differentiation)

Vi Xy + Vi Xy = [

In the case that we are interested in, namely when (M,g) = (R""!,n) and (2°,...,2") are the
standard Cartesian coordinates on R"*!, the above relation becomes
a,qu/ + auX,u, - fnul/' (7)

Contracting the above equation with n*”, we infer that

2
200X, =20, X, = (n+1)f = f= ?aAXA.
n
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Setting divX = 9* X, we can substitute for f as above in (7) to obtain:
2 :
(9HX,, + &,XM = n—H(d'ZUX)ThW. (8)

We will use (8) to exchange the indices in expressions of the form 9,X,. In particular, we calculate:

(8)

2
GQOB@X : 0, 850 X + n+1 77,W8 ang)X

2
8 0 85)( + nt1 nw,(? ngwX

2 2
(9 0,0, X5 — ana L0, div X + ] 7}“”8 OpdivX

(8)

2 2 2
® 9 00, X, + ] 7751,6 OpdivX — Fm/g@ WOy div X + I 77W8 OpdivX
(9)

and, after moving the first term on the right hand side to the left hand side (noting that they are
the same term), we infer:

1 1 1
00030, X, = Fmg,,a O div X — - 177M56 o, divX + Tn,wa L OpdivX. (10)

From the above equation, we can obtain a relation for divX = n*9,X, by taking the contraction
with respect to 1*, which yields (recall that 7"*n,, = d%):

2 1
030, divX = n—Haﬁa“de — Ny (divX) = 030, divX = Z+ 177MBD (divX), (11)

where we denote [, h = 77°0,0sh (this is the usual wave operator).

Remark. Note that, in the above, it is crucial that n > 1; in the 1 + 1 dimensional case, the above
identity becomes trivial.

Taking one more contraction of (11) with 7, we finally obtain the following relation for O, div X :

(n+ 1)

O, divX = : 0,(divX) = 0O,)(divX) =0.

n J—
Substituting the above in (11), we obtain:
858#divX = 0.

Substituting this in (10), we finally obtain that a conformally Killing vector field on (R"*! n) for
n > 2 satisfies
00050, X, =0,

i.e. the components of X are at most quadratic in the cartesian coordinates:

X, = Mmgxo‘xﬁ + B,ox% + b, (12)
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(where the M,n3, Bua, b, are constants and M, is symmetric in «, 3).
In order to determine the relations satisfied by the coefficients in (12), we can substitute in the
first order relation (8), from which we obtain

2 «
B,ul/ + By“ - n——i-ln 5Ba677;w (13)

note that the above relation is satisfied for any B, which is of the form “antisymmetric’+An,, ) and
Y Dag y um

Mo + Mo = 7775M75a77w, forall a=0,...,n

n+1

Note that, similarly to (13), the above relation only admits solutions of the form M,S%t) + A,

where Mﬁﬁt) is antisymmetric in u, v. The solutions of this form that are also symmetric in v, a are
then completely specified by \,: We have
M;(LZZt) + Aol = M;(j;g/t) + ATa

= —M, (ant) + )\Vn,uoz

apy

— _(Ma(fﬁ,t + )\zﬂ]au) + 2\ Npa
— —(Marlzjzt + XNallaw) + 22X M0
— M(ant) A wMaw + 2)\1/77;104

Vo

— (Mygjgt + XMllva) = 2 = Malaw + 2\ e
= (Mlgzgt) + AO&TMU) - 2)\unocu + 2>\V77uo¢

— Mﬁigt) + Aavp — 20 Mar + 220040

from which we obtain (after moving the first term in the right hand side to the left hand side):

Nlant) _ AT — ATl

pro

From all the above, we infer that the dimension of the Lie algebra of conformally Killing vector fields
on (R"*! n) has dimension (n+ 1)+ w +(n+1) = W A basis of conformally Killing
vector fields consists of the basis of Killing vector fields presented in part b, plus the dilation vector
field S = 2“0, and the generators of the special conformal transformations, a basis of which are the

vector fields Ky = 2n\,2“2"0, — NapT®2POy, A =0,...,n

Remark. In 1 + 1 dimensions, the Lie algebra of conformally Killing vector fields is infinite dimen-
sional. Recall that this case is special in other ways as well with respect to the conformal structure:
Any 141 dimensional Lorentzian manifold is locally conformally equivalent to Minkowski spacetime.

(d) Recall that n-dimensional de-Sitter space is isometrically embedded in (R"*! 7) as the sub-
manifold S = {z € R"" : 5,28 = +1} equipped with the induced (Lorentzian) metric. As a
result, any isometry of (R"*! n) that maps S to itself should give rise to an isometry of S. It can
be readily seen that every linear isometry (i.e. fixing the origin) of (R"*! 1) maps S to itself, since,
due to linearity, for any such isometry F' we must have n(F(x), F(z)) = n(z,z) (treating x € R"*!
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as a vector). In part (b), we saw that the group of such isometries of (R"*!,7) has dimension @
(generated by the Killing vector fields with vanishing constant term b). Thus, the group of isometries

of de Sitter space has dimension at least equal to this.

4.3 In this exercise, we will study the question of whether a given Lorentzian manifold can be
extended, i.e. isometrically embedded into a larger Lorentzian manifold in a non trivial way.
This question arises often in general relativity in the study of singularities emerging from
smooth “initial data” (such as the singularities in the interior of black holes, or “big bang™type
singularities).

(a) Consider the spacetime (M, g) with M = R; x (zg, +00),, 2o > 0, and
To

(1 Toy 52 _ Toy-1, 9
g= (1 $)dt—|—(1 x) dx”.

Show that (M, g) can be extended smoothly “beyond = = xy” by finding a coordinate
transformation (t,r) — (£(t,x),z) = (t + f(z),x) such that, with respect to the new
coordinates, the components of g can be smoothly extended as functions of (¢, z) beyond
x = xp. Can you express this process as an embedding of (M, g) into a larger Lorentzian
manifold?

*(b) Consider the spacetime (N, h) with NV = (0, +00); x S} and
2, L0
h = —tdt” + ;d& .
We will show that (N, h) is inextendible as a C° Lorentzian manifold beyond ¢ = 0. We

will achieve this in a number of steps; we will essentially follow the method introduced by
Sbierski to prove a similar statement for the interior of the Schwarzschild black hole.

1. For any Lorentzian manifold (M’, ¢') and any domain U, we will define the spacelike
diameter of U by

spdiam/ = sup {6(7) : v C U is a spacelike curve }

Show that if p,q € (R'™!,n) with ¢ € I~ (p), then

spdiam/™ (q) NI~ (p) < /(p° — ¢°)% — (p' — ¢").

2. If g is a C? oriented Lorentzian metric on R'*!, show that, for every pairs of sequences
of points p,, ¢, € R™ with ¢, € I~ (p,) (the past cone defined with respect to g) and
lim,, 100 ¢ = lim,, s oo P = p, We have

n—-+00

spdiam/ ™ (q,) N I~ (p,) —— 0.
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3. We will assume as given the following statement:
If (M, ¢) is a 1+ 1 dimensional and oriented C° Lorentzian manifold and Q C M’
is a domain in M’ with the property that Q covers the past of 0L, i.e. I-(p) C
for any p € 09, then the following holds: For any p € 0X), there exists a sequence
qn € I~ (p) and p, € I (p) such that gy, py, D2E0 poand I(qg,) NQ C I (pn).

Using that, show that (N, k) above is not extendible as a C° spacetime beyond ¢ = 0.

Solution. (a) Setting (¢,z) = t + f(x) (for a function f : (9, +00) — R to be determined), we
compute that
dt = dt + f'dx
and, therefore
Zo 2 Loy —1 2
=—(1——)dt 1—-—) d
g= (1= a4 (1 - 20) s
= (1= D) (di - fary? + (1- ) da?
x x

— (1= 20+ 2(1 = 22) f(@)dide + (1= 22) 7 = (1= 22)(/())?) da?,
x x x x

Therefore, defining f(z) so that f/(z) = (1 — %)_1 near r = o (i.e. f(x) = log(z — xo) + h(x)
for some h(x) which is smooth and bounded at z = z;), we infer that the components of g in
the (#,7) coordinate chart can be smoothly extended (as functions) across xg. Let us denote with
G such an extension on (zy — ¢, +00) for some € > 0. Identifying in the (¢,7) coordinates M
with the domain R x (z0, +00) and setting M = R x (zo — ¢, +00), we infer that the inclusion
R x (20, +00) < R x (29 — €, +00) defines an isometric embedding (M, g) — (M, §).

(b) 1. The notion of spacelike diameter is purely geometric, i.e. it is preserved under isometric
transformations. Moreover, the bound that we need to show, namely

spdiam <[+(Q) N f‘(ﬁ)) <V —q0)? = (p' — ¢')?

is also invariant under isometric transformations, since the right hand side is simply the timelike
distance between p and ¢. Therefore, without loss of generality (by possibly applying a translation
and a boost on (R'™!,n), if necessary), we can assume that the points p and ¢ have coordinates (in
the (t,z) Cartesian coordinate system)

p= (T’0)7 q= (_T70)
for some T > 0, so that I7(q) N I~ (p) becomes the square
MgnI-(p)={(tz): -T<t—-z<T,-T<t+z<T}

We will show that any spacelike curve in the above set has length at most equal to 27", thus proving
that the spacelike diameter of I*(¢) N I~ (p) is at most 27 (in fact, it is equal to this value, since
the maximal length is achieved by the straight line segment connecting (0,—7") to (0,7)). Let
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v : la,b] = I'"(q)N I~ (p) be a spacelike curve. Since n = —dt*+dz?, the condition that v is spacelike
translates to |¥*] > |¥*| = 0. We can therefore reparametrize v so that 4% = 1 (i.e. parametrize it by
the x coordinate); recall that the length of the curve is invariant under reparametrizations. In this
case, y(z) takes the form

v(z) = (t(z),z), o<z <2

for some zo < z1 in [T, T], with the condition that v is spacelike translating to || < 1. Thus, we
compute:

dt
/\/ Vvdx—/ d / dr = x1 — xg < 27
x

Thus, we have shown that

spdiam <I+(q) N I*(p)> < 2T = timelike distance of p, q.

2. Without loss of generality, we will assume that we have fixed a global coordinate system (¢, x)
on R such that p — (0,0) and 0;, 9, are orthonormal at the point p, i.e.

gl, = —dt* + da?

(note that this can always be achieved by an affine change of coordinates). Since g is a C° Lorentzian
metric, we infer that, near p = (0,0), we the components of g behave as follows:

g = (=1+o(1))dt* + o(1)dtdz + (1 + o(1))dx*. (14)

Moreover, since (R'™!, g) is time oriented, we can fix a globally defined future directed timelike vector
field V' and we will assuming (by applying the transformation t — —t¢, if necessary) that, at the point
p, 04, is future directed. For any p > 0, we will also denote with B, the coordinate (open) ball of

radius p around p, i.e.
B, ={(t,z) : VI* + 2> < p}.

Let 0o > 0 be sufficiently small (depending only on the geometry of (R'*! g) near p). For any
5 €(0,09), if y, 2z € Bs with y lying in the past of z, then

I*(y) NI (2) C By (15)

Informally, the above inclusion says that if y, z are both sufficiently close to p, then any future
directed timelike curve from y to z also has to stay close to p. We will show (15) below; for now, let
us assume that (15) holds, so that

spdiam <I+ (y) N ]‘(z)) < spdiam (B j5).
We will show that, if d, is small enough so that the o(1) terms in (14) are of size < & on B, s, we

have
spdiam (B ;) < 4V, (16)
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from which it follows that lim, . ¢, = lim, o p, = p with ¢, € I~ (p,) ,then

n—-+00

spdiam/ ™" (¢q,) N I~ (p,) —— 0.

In order to prove (16), we will argue similarly as for part 2: If  is a spacelike curve B s, then, in
view of (14), we have |§"| > 1]5*| and hence ~ can be parametrized by z, so that y(z) = (t(z), z).
Then, we have (recall that we assumed that the o(1) terms in (14) are of size < 5 on B, 5):

0(7) :/ VI, 5) dx:/ \/—(1+o(1))|t’]2+0(1)t’+(1+0(1))d:c < / 2dr < 2 sup ‘xl—:c
zo zo zo (wo,to),(z1,t1)€EB /5
Thus, (16) holds.
Proof of (15). We will establish (15) by contradiction: Assume that there exists a future directed
timelike curve v : [0, A] = R'" such that v(0) =y, 7(A) = z and (so) ¢ B, /5 for some sy € (0, A).
Provided &y > 0 was chosen sufficiently small in terms of the geometry of (R'!, g), the coordinate
ball B, /; will lie inside the coordinate system (¢, x) fixed above around p and that the o(1) terms in

(14) are of size < %. By reparametrizing the domain of ~ if necessary, we can assume without loss

of generality that v N B s is parametrized by ¢ + const, i.e. that in v N B s, we have 4* = 1 and,
thus, since v is timelike (and [gag — Mag| < lio), we must have

x93
|’y|<§ on N B . (17)

Let s, € (0, so] be the largest number such that v(s) € B s for all s € [0, s,) (note that s, < sq since
v(s0) & B,j5). Note that, by continuity, we should have (s,) € closB s \ B, so that

tys) + 273y = 6. (18)
In view of the fact that 4 = 1 for s € [0, s,), we have

[ty = tho| = ls..
In view of the fact that (17) holds for s € [0, s.), we have

3

|x|7(5*) - x|ﬂ/(0)| < §|S*|

Those estimates, combined with the fact that v(0) € B; (and hence |t|y)|,|2|,0)| < 0) and § <

15—0\/5 (which holds if dy has fixed sufficiently small), imply, in view of (18), that

1
|5,] > Zﬁ.

Let us now consider the curve 7 : [0, A] — R**! such that

A(s) =(s) for s € [s4, A
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while 7|o,] is contained in clos(B, ;) and is defined (in the (¢,2) coordinates) as the straight line
segment, connecting y(A) = z to y(s), i.e.

Sy — S Sy — S

S
tlya), S—fvlws*) + ]y (a))-

* * *

() = (then +
Note that 7 is closed, piecewise O and satisfies
F(s) = A(s) fors € (s,, A)
and (since [t(v(A))], |a(7(A))] <6 < V0)

st

y(s)%m(s) for s€(0,5.).

Let 0 : [0, A] — R be a smoothing out of ¥ so that o is still a closed curve, is pointwise J-close
to 4 and satisfies '
d(s) =7(s) for sé&[si+0,A—1]

(hence &(s) is timelike and future directed in the above interval) and
1.
a(s) =4(s)) > g\’ﬂ(s) >0 for se[0,s.+dU[A—0, A (19)

Note that o might still have self-intersections. We, can however, remove those self-intersections:
If s < s € (0, A) are two points such that o(s?) = o(s(!)), then we can remove the interval
(5@, sM) from the domain of ¢ and the remaining curve will still be closed, continuous and piecewise
C'; we can then smooth-out again this curve, and the tangent to the new curve will still satisfy the
above estimates (if 7(s) was originally timelike and future directed near s = sg, the smoothing will
retain this property, since the set of future directed timelike vectors at a point forms an open conver
cone; similarly for the condition (19)). Thus, after repeating the above “surgery” procedure a finite
number of times, we are left with a semple closed curve o.

We will now show that the existence of such a simple closed curve leads to a contradiction in
view of the fact that g admits a global timelike vector V, based on a topological argument (which
uses the fact that the background manifold is R?). Note that the above conditions on ¢ and the fact
that V' is timelike and future directed (and hence, V¥ > %|V"| > 0 on B, ;) imply that

MNVlos) +No(s) #0 forall s €[0,A] and A\, X" >0 with (A, X') # (0,0)

(for the region s € [s.+0J, A—J], the above follows from the fact that both vectors are future directed
and timelike; for s € [0, s, + 0] U [A — §, A], just check the t-components of V' and ¢ are positive).
Thus, if X is an arbitrary extension of the vector field & to an open neighborhood U, of o (such an
extension exists because o was assumed to not have self-intersections) then, if V, is an even smaller
open neighborhood of ¢ (sufficiently small in terms of the precise form of o, the extension X and the
vector field V) and f: R — [0,1] is a smooth function such that

flo=1 and f=0 on R'\V,,
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the vector field
W=fX+(1-f)-V

is nowhere 0 on R'*! and is tangent to the simple closed curve o. However, such a curve o bounds
a closed topological disc D in R? (by the Jordan curve theorem); this is a contradiction, since any
smooth vector field on D which is tangent to 9D must vanish at least once in D (otherwise, if we
glued two such copies of D along 9D we would get a non-vanishing continuous vector field on 5?).

3. Let us fix a time orientation on (N, h) so that —0; is future directed (so that ¢t = 0 lies “to the
future” of N' = (0, +00); xS}). Assume, for the sake of contradiction, that (N, h) admits an extension
as a C° Lorentzian manifold beyond ¢ = 0, i.e. that there exists a C° Lorentzian manifold (N, k')
and an open domain Q C N’ with Q # N’ such that (NV,h) can be isometrically identified with
(Q, 1) and, under this identification, the function ¢ on A (i.e. on Q) can be continuously extended
up to 9 with t|sn = 0. Note that, for any ¢ > 0, we have that the level set {t = c} is entirely
contained in Q (i.e. ), it is a spacelike hypersurface and, in view of the explicit form of h, we have
that, for any p € {t = ¢}, the past of p satisfies I~ (p) C {t > c}. By continuity of A’ across 0%, we
infer that the tangent space of 92 = {t = 0} at every point is either spacelike or null (as the limit of
spacelike hypersurfaces) and, for any p € 09, we have I~ (p) C {t > 0} = Q (note that the limitting
process at first appears to only guarantee that I~ (p) C clos(2; however, I~ (p) N 9Q = 0, since I~ (p)
is an open set of N and hence, if it contains a point on 99, it should also intersect N’ \ ). Thus,
Q2 covers the past of 0.

Let p € 0. There exists a sequence ¢, € I~ (p) and p, € I (p) such that g,,p, 22F p and
I(g,)NQ C I~ (p,) (see the statement of the exercise). Since (A, 1) is a C° Lorentzian manifold and
p has a small neighborhood diffeomorphic to R? (note that any sufficiently small neighborhood of a
point in a C° Lorentzian manifold is time orientable; in this case, we can choose the time orientation
that agrees with the one we have fixed on ), from part 2 above we have that

n—00

spdiam (17 (g,) N Q) C spdiam(I7(g,) NI~ (p,)) —— 0. (20)

However, we can explicitly compute the spacelike diameter of the set 17 (g, )N, since this lies entirely
inside Q (i.e. (M, h)): Assuming without loss of generality (by shifting, if necessary, the 6 coordinate
in the S' factor of N) that ¢, = (t,,6,) = (t,,0), we can compute from the explicit form of & that
the two future directed null curves emanating from ¢, (and which mark the boundary of Z%(qg,))
take the form v, (¢) = (¢,64(t)), with

Ou(t) =+t, 0(tn) =0

(so that 04 (t) = (¢t — ¢,)?). In particular, I*(g,) contains the spacelike line segments (for s €
(0,t,]): , )
W ={(t.0) EN: t=5 —o(s— 1) <O S(s— 1)’}
Note that oot?
5(s—tn 1 _ tn 2
lim ¢(y™) = lim —df = lim (s=t)” = +00

s—0t s—0t

—1(s—tn)? \/E s—0t \/E
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and, therefore,
spdiam (I*(g,) N Q) = +oo,

which is a contradiction in view of (20).
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