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4.1 Let Mn be a di�erentiable manifold.

(a) Show that, for any X, Y, Z ∈ Γ(M):

L[X,Y ]Z = LXLYZ − LYLXZ.

Show that the above relation also holds when Z is replaced by any tensor �eld f of type
(k, l), k, l ∈ N. (Hint: Check how LX behaves on tensor products of the form f1 ⊗ f2.)

(b) Show that the space K of Killing vector �elds on (M, g) is closed under commutation, i.e.
that [X, Y ] ∈ K if X, Y ∈ K; thus, K forms a Lie subalgebra of Γ(M).

(c) Let g be a Lorentzian metric on M. Let X be a Killing �eld on (M, g). Show also that,
for any V,W ∈ Γ(M):

g
(
∇VX,W

)
+ g

(
∇WX, V

)
= 0,

where ∇ denotes the Levi-Civita connection associated to g (recall that ∇ is torsion-free
and satis�es ∇Xg = 0 for all X ∈ Γ(M).) (Hint: Apply the product rule on the expression
X(g(Y, Z)) = LX(g(Y, Z)) for suitably chosen vector �elds Y, Z.)

Solution. (a) Using the formula LXY = [X, Y ] holding for any X, Y ∈ Γ(M), we can readily
calculate that the relation

L[X,Y ]Z = LXLYZ − LYLXZ

is equivalent to the statement that[
[X, Y ], Z

]
=

[
X, [Y, Z]

]
−
[
Y, [X,Z]

]
which, after rearranging the terms and using the anti-symmetry of [·, ·] in its arguments, is equivalent
to [

[X, Y ], Z
]
+
[
[X, Y ], Z

]
+
[
[X, Y ], Z

]
= 0.

The above is just Jacobi's identity.
Using the fact that, for any 1-form ω and any X, Y ∈ Γ(M), the Lie derivative LXω satis�es

X
(
ω(Y )

)
= LXω(Y ) + ω

(
LXY

)
,

we can compute:
LXω(Y ) = X

(
ω(Y )

)
− ω

(
[X, Y ]

)
.

Therefore, we can readily calculate for any X, Y, Z ∈ Γ(M)

LX(LY ω)(Z) = X
(
LY ω(Z)

)
− LY ω([X,Z])

= X
(
Y (ω(Z))− ω([Y, Z])

)
− Y

(
ω([X,Z])

)
+ ω

([
Y, [X,Z]

])
= X

(
Y (ω(Z))

)
−X

(
ω([Y, Z])

)
− Y

(
ω([X,Z])

)
+ ω

([
Y, [X,Z]

])
and, after switching the roles of X, Y :

LY (LXω)(Z) = Y
(
X(ω(Z))

)
− Y

(
ω([X,Z])

)
−X

(
ω([Y, Z])

)
+ ω

([
X, [Y, Z]

])
.
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Subtracting the above relations (noting that the second and third term in each right hand side cancel
out), we obtain

LX(LY ω)(Z)− LY (LXω)(Z) = [X, Y ]
(
ω(Z)

)
+ ω

([
Y, [X,Z]

]
−
[
X, [Y, Z]

])
= [X, Y ]

(
ω(Z)

)
− ω

([
[X, Y ], Z

])
=

(
L[X,Y ]ω

)
(Z)

(where, in passing from the second to the third line above, we used Jacobi's identity). Since the
above relation is true for any Z ∈ Γ(M), we infer that

L[X,Y ]ω = LXLY ω − LYLXω.

In order to prove that the same relation holds for any tensor �eld T , i.e.

L[X,Y ]T = LXLY T − LYLXT, (1)

we can argue inductively on the type of T : If the formula is true for all tensor �elds of type (k, l),
then (due to linearity) (1) will also be true for all tensor �elds of type (k+1, l) if it's true for tensors
of the form

T = T̄ ⊗ V,

where T̄ is of type (k, l) and V ∈ Γ(M) (we get the same statement for tensor �elds of type (k, l+1)
if we replace V with ω ∈ Γ∗(M)). Using the formula

LXT = LX T̄ ⊗ V + T̄ ⊗ LXV,

verifying (1) using that it is true for T̄ and V is a simple algebraic exercise. Similarly when V is
replaced with ω ∈ Γ∗(M).

(b) If X, Y ∈ K, then LXg = LY g = 0. Using the commutator formula from part (a) of this
exercise, we calculate

L[X,Y ]g = LX

(
LY g

)
− LY

(
LXg

)
= 0− 0 = 0.

(c) We will compute the expression X
(
g(V,W )

)
in two di�erent ways:

� Thinking in terms of the Lie derivative in the direction of X and using the fact that LX(f⊗h) =
LXf ⊗ h+ f ⊗ LXh and that LX commutes with contractions, we obtain

X
(
g(V,W )

)
=
(
LXg

)
(V,W ) + g

(
LXV,W

)
+ g

(
V,LXW

)
=0 + g

(
[X, V ],W

)
+ g

(
V, [X,W ]

)
(note that we used our assumption that LXg = 0).

� Thinking in terms of the covariant derivative ∇X , we have

X
(
g(V,W )

)
= g

(
∇XV,W

)
+ g

(
V,∇XW

)
.
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Combining the above relations, we obtain that the corresponding right hand sides must be equal to
each other; using, in addition, the fact that the Levi-Civita connection ∇ is torsion-free, i.e.

∇XY −∇YX − [X, Y ] = 0

we obtain:

g
(
∇XV,W

)
+ g

(
V,∇XW

)
= g

(
[X, V ],W

)
+ g

(
V, [X,W ]

)
= g

(
∇XV,W

)
− g

(
∇VX,W

)
+ g

(
V,∇XW

)
− g

(
V,∇WX

)
,

i.e.:
g
(
∇VX,W

)
+ g

(
V,∇WX

)
= 0. (2)

4.2 (a) Let F : (Rn+1, η) → (Rn+1, η) be an isometry of Minkowski spacetime. Show that, with respect
to the Cartesian coordinate system (x0, . . . , xn) on Rn+1, the di�erential dF satis�es at every
x ∈ R

n+1:
ηµν∂αF

µ(x)∂βF
ν(x) = ηαβ.

Deduce that F is an a�ne isometry, i.e. takes the form F (x) = Ax + b. (Hint: Di�erentiate
the above relation.)

(b) Let t → Ft : (Rn+1, η) → (Rn+1, η) be a 1-parameter group of isometries. Prove that the
generator of {Ft}t∈R, namely the vector �eld

x → X|x
.
=

d

dt
Ft(x)

∣∣∣
t=0

,

is a�ne, i.e. is of the form
Xµ(x) = Aµ

νx
ν + bµ

for some constants Aµ
ν , b

µ. Show also that the matrix Aµ
ν satis�es

ηαµA
µ
β + ηβµA

µ
α = 0. (3)

What is the dimension of the Lie algebra of Killing vector �elds on (Rn+1, η)?

(c) Can you similarly classify all conformal Killing vector �elds on (Rn+1, η) when n ⩾ 2?

(d) Show that the Lie group of isometries of the n-dimensional de Sitter space (see Exercise 2.1) has

dimension at least n(n+1)
2

(we will later show that this is also an upper bound for the dimension
of the group of isometries of any n-dimensional Lorentzian manifold).

Solution. (a) Since F is an isometry, the di�erential dF : (TpR
n+1, η) → (TF (p)R

n+1, η) is a linear
isometry of vector spaces. Thus, we have:

η
(
dF (

∂

∂xα
), dF (

∂

∂xβ
)
)
= η

( ∂

∂xα
,

∂

∂xβ

)
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and, therefore (in view of the fact that dF ( ∂
∂xα ) = ∂αF

µ∂µ), we obtain for any α, β = 0, . . . , n:

ηµν∂αF
µ∂βF

ν = ηαβ. (4)

Di�erentiating the above relation with respect to ∂γ (using the fact that the coe�cients ηαβ are
constant in x and the symmetry of η), we get:

0 = ηµν∂γ∂αF
µ∂βF

ν + ηµν∂αF
µ∂γ∂βF

ν

= ηµν∂γ∂αF
µ∂βF

ν + ∂β
(
ηµν∂αF

µ∂γF
ν
)
− ηµν∂β∂αF

µ∂γF
ν

= ηµν∂γ∂αF
µ∂βF

ν + ∂β
(
ηµν∂αF

µ∂γF
ν
)
− ∂α

(
ηµν∂βF

µ∂γF
ν
)
+ ηµν∂βF

µ∂α∂γF
ν

= ηµν∂γ∂αF
µ∂βF

ν + ∂β
(
ηαγ

)
− ∂α

(
ηβγ

)
+ ηµν∂βF

µ∂α∂γF
ν

= 2ηµν∂γ∂αF
µ∂βF

ν .

Because η is non-degenerate and dF is invertible (as a linear isometry), we infer that the matrix
Mνα = ηµν∂αF

µ (which is simply the matrix-product of the matrices [ηµν ] and [∂αF
µ]) is invertible;

hence, by multiplying the above relation with Nλν (where N = M−1), we infer that

∂γ∂βF
λ = 0 for all β, γ, λ = 0, . . . n.

Therefore, F λ has to be an a�ne function, i.e. F λ(x) = Aλ
µx

µ + bλ for some constants Aλ
µ and bλ,

µ, λ = 0, . . . , n. Note that, in this case, (dF )βα = Aβ
α; hence (in view of the fact that dF is a linear

isometry), the matrix A is orthonormal with respect to η (i.e. belongs to the group SO(1, n)).

(b) If t → Ft : (R
n+1, η) → (Rn+1, η) is an 1-parameter group of isometries, then, in view of part

(a), it takes the form (in the (x0, . . . , xn) Cartesian coordinate system):

(Ft)
µ(x) = (Ct)

µ
νx

ν + (dt)
µ. (5)

Di�erentiating1 (5) with respect to t and setting Aν
µ

.
= d

dt
(Ct)

µ
ν

∣∣∣
t=0

and bµ
.
= d

dt
(dt)

µ
∣∣∣
t=0

, we obtain

that the vector �eld X ∈ Γ(Rn+1) which is the generator of the family Ft, i.e. de�ned at every point
x ∈ R

n as X|x = d
dt
Ft(x)

∣∣
t=0

, satis�es

Xµ(x) = Aµ
νx

ν + bµ. (6)

The relation (4) for Ft reads
ηµν(Ct)

µ
α(Ct)

ν
β = ηαβ.

Di�erentiating the above relation at t = 0 and using the fact that Aν
µ

.
= d

dt
(Ct)

µ
ν

∣∣∣
t=0

and (C0)
µ
ν = δµν

(since F0(x) = x, as a consequence of the fact that Ft is a 1-parameter semigroup), we obtain:

ηµβA
µ
α + ηανA

ν
β = 0,

which can be reexpressed (after relabelling the indices) as (3).

1The fact that Ft(x) (and, as a consequence, (Ct)
µ
ν and (dt)

µ) is di�erentiable in t follows from our assumption
that Ft is an 1-parameter group of di�eomorphisms.
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Remark. Note that (3) is nothing else than the usual equation ∇µXν + ∇νXµ = 0 satis�ed by a
Killing vector �eld on a general Lorentzian manifold (M, g) (see Ex. 4.1.c).

If we de�ne
Ãαβ

.
= ηµαA

µ
β,

then (3) is equivalent to the statement that Ãαβ is antisymmetric. As a result, Ã has at most n(n+1)
2

degrees of freedom (as many as an antisymmetric (n + 1) × (n + 1) matrix); since A (as a matrix)

is obtained from Ã by multiplication with an invertible matrix, we infer that A has at most n(n+1)
2

degrees of freedom too. As a result, the right hand side of (6) has at most n(n+1)
2

+n+1 = (n+1)(n+2)
2

linearly independent free parameters (corresponding to the free parameters in A and b) and, hence,

the space of Killing vector �elds in Minkowski spacetime is at most (n+1)(n+2)
2

-dimensional. One

can verify that its dimension is exactly (n+1)(n+2)
2

by noting that the generators translations, spatial

rotations and hyperbolic rotations (boosts) form a set of (n+1)(n+2)
2

linearly independent Killing vector
�elds, namely

Tα =
∂

∂xα
, α ∈ {0, . . . , n},

Ωij = xi ∂

∂xj
− xj ∂

∂xi
, i < j ∈ {1, . . . , n},

Ω0i = x0 ∂

∂xi
+ xi ∂

∂x0
, i ∈ {1, . . . , n}.

(c) Recall that a conformally Killing vector �eld X on a Lorentzian manifold (M, g) satis�es

LXg = f · g

for some f ∈ C∞(M). The analogue of the Killing equation (2) then becomes (with essentially the
same derivation)

g(∇VX,W ) + g(V,∇XW ) = f · g(V,W ) for all V,W ∈ C∞(M).

If V,W are coordinate vector �elds in a given coordinate chart (x0, . . . , xn), the above relation yields
(recalling our convention that

Xα
.
= gαβX

β

and the fact that the musical isomorphism commutes with covariant di�erentiation)

∇µXν +∇νXµ = fgµν .

In the case that we are interested in, namely when (M, g) = (Rn+1, η) and (x0, . . . , xn) are the
standard Cartesian coordinates on Rn+1, the above relation becomes

∂µXν + ∂νXµ = fηµν . (7)

Contracting the above equation with ηµν , we infer that

2∂λXλ
.
= 2ηµν∂µXν = (n+ 1)f ⇒ f =

2

n+ 1
∂λXλ.
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Setting divX
.
= ∂λXλ, we can substitute for f as above in (7) to obtain:

∂µXν + ∂νXµ =
2

n+ 1
(divX)ηµν . (8)

We will use (8) to exchange the indices in expressions of the form ∂µXν . In particular, we calculate:

∂α∂β∂µXν
(8)
= −∂α∂β∂νXµ +

2

n+ 1
ηµν∂α∂βdivX

= −∂α∂ν∂βXµ +
2

n+ 1
ηµν∂α∂βdivX

(8)
= ∂α∂ν∂µXβ −

2

n+ 1
ηµβ∂α∂νdivX +

2

n+ 1
ηµν∂α∂βdivX

(8)
= −∂α∂β∂µXν +

2

n+ 1
ηβν∂α∂µdivX − 2

n+ 1
ηµβ∂α∂νdivX +

2

n+ 1
ηµν∂α∂βdivX

(9)

and, after moving the �rst term on the right hand side to the left hand side (noting that they are
the same term), we infer:

∂α∂β∂µXν =
1

n+ 1
ηβν∂α∂µdivX − 1

n+ 1
ηµβ∂α∂νdivX +

1

n+ 1
ηµν∂α∂βdivX. (10)

From the above equation, we can obtain a relation for divX = ηαν∂αXν by taking the contraction
with respect to ηαν , which yields (recall that ηκληλρ = δκρ ):

∂β∂µdivX =
2

n+ 1
∂β∂µdivX − ηµβ□η(divX) ⇒ ∂β∂µdivX =

n+ 1

n− 1
ηµβ□η(divX), (11)

where we denote □ηh
.
= ηγδ∂γ∂δh (this is the usual wave operator).

Remark. Note that, in the above, it is crucial that n > 1; in the 1 + 1 dimensional case, the above
identity becomes trivial.

Taking one more contraction of (11) with ηβµ, we �nally obtain the following relation for □ηdivX:

□ηdivX =
(n+ 1)2

n− 1
□η(divX) ⇒ □η(divX) = 0.

Substituting the above in (11), we obtain:

∂β∂µdivX = 0.

Substituting this in (10), we �nally obtain that a conformally Killing vector �eld on (Rn+1, η) for
n ⩾ 2 satis�es

∂α∂β∂µXν = 0,

i.e. the components of X are at most quadratic in the cartesian coordinates:

Xν = Mναβx
αxβ +Bναx

α + bν (12)
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(where the Mναβ, Bνα, bν are constants and Mναβ is symmetric in α, β).
In order to determine the relations satis�ed by the coe�cients in (12), we can substitute in the

�rst order relation (8), from which we obtain

Bµν +Bνµ =
2

n+ 1
ηαβBαβηµν (13)

(note that the above relation is satis�ed for any Bαβ which is of the form �antisymmetric�+ληµν) and

Mνµα +Mµνα =
2

n+ 1
ηγδMγδαηµν for all α = 0, . . . , n.

Note that, similarly to (13), the above relation only admits solutions of the form M
(ant)
µνα + λαηµν ,

where M
(ant)
µνα is antisymmetric in µ, ν. The solutions of this form that are also symmetric in ν, α are

then completely speci�ed by λα: We have

M (ant)
µνα + λαηµν = M (ant)

µαν + λνηµα

= −M (ant)
αµν + λνηµα

= −
(
M (ant)

αµν + λνηαµ
)
+ 2λνηµα

= −
(
M (ant)

ανµ + λµηαν
)
+ 2λνηµα

= M (ant)
ναµ − λµηαν + 2λνηµα

=
(
M (ant)

ναµ + λµηνα
)
− 2− λµηαν + 2λνηµα

=
(
M (ant)

νµα + λαηνµ
)
− 2λµηαν + 2λνηµα

= −M (ant)
µνα + λαηνµ − 2λµηαν + 2λνηµα

from which we obtain (after moving the �rst term in the right hand side to the left hand side):

M (ant)
µνα = λνηµα − λµηαν .

From all the above, we infer that the dimension of the Lie algebra of conformally Killing vector �elds
on (Rn+1, η) has dimension (n+ 1) + (n+1)(n+2)

2
+ (n+ 1) = (n+1)(n+6)

2
. A basis of conformally Killing

vector �elds consists of the basis of Killing vector �elds presented in part b, plus the dilation vector
�eld S = xα∂α and the generators of the special conformal transformations, a basis of which are the
vector �elds K(λ) = 2ηλαx

αxν∂ν − ηαβx
αxβ∂λ, λ = 0, . . . , n.

Remark. In 1 + 1 dimensions, the Lie algebra of conformally Killing vector �elds is in�nite dimen-
sional. Recall that this case is special in other ways as well with respect to the conformal structure:
Any 1+1 dimensional Lorentzian manifold is locally conformally equivalent to Minkowski spacetime.

(d) Recall that n-dimensional de-Sitter space is isometrically embedded in (Rn+1, η) as the sub-
manifold S = {x ∈ R

n+1 : ηαβx
αβ = +1} equipped with the induced (Lorentzian) metric. As a

result, any isometry of (Rn+1, η) that maps S to itself should give rise to an isometry of S. It can
be readily seen that every linear isometry (i.e. �xing the origin) of (Rn+1, η) maps S to itself, since,
due to linearity, for any such isometry F we must have η(F (x), F (x)) = η(x, x) (treating x ∈ R

n+1
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as a vector). In part (b), we saw that the group of such isometries of (Rn+1, η) has dimension n(n+1)
2

(generated by the Killing vector �elds with vanishing constant term b). Thus, the group of isometries
of de Sitter space has dimension at least equal to this.

4.3 In this exercise, we will study the question of whether a given Lorentzian manifold can be
extended, i.e. isometrically embedded into a larger Lorentzian manifold in a non trivial way.
This question arises often in general relativity in the study of singularities emerging from
smooth �initial data� (such as the singularities in the interior of black holes, or �big bang�-type
singularities).

(a) Consider the spacetime (M, g) with M = Rt × (x0,+∞)x, x0 > 0, and

g = −
(
1− x0

x

)
dt2 +

(
1− x0

x

)−1
dx2.

Show that (M, g) can be extended smoothly �beyond x = x0� by �nding a coordinate
transformation (t, x) → (t̃(t, x), x) = (t + f(x), x) such that, with respect to the new
coordinates, the components of g can be smoothly extended as functions of (t̃, x) beyond
x = x0. Can you express this process as an embedding of (M, g) into a larger Lorentzian
manifold?

*(b) Consider the spacetime (N , h) with N = (0,+∞)t × S
1
θ and

h = −tdt2 +
1

t
dθ2.

We will show that (N , h) is inextendible as a C0 Lorentzian manifold beyond t = 0. We
will achieve this in a number of steps; we will essentially follow the method introduced by
Sbierski to prove a similar statement for the interior of the Schwarzschild black hole.

1. For any Lorentzian manifold (M′, g′) and any domain U , we will de�ne the spacelike
diameter of U by

spdiamU .
= sup

{
ℓ(γ) : γ ⊂ U is a spacelike curve

}
.

Show that if p, q ∈ (R1+1, η) with q ∈ I−(p), then

spdiamI+(q) ∩ I−(p) ⩽
√
(p0 − q0)2 − (p1 − q1)2.

2. If g is a C0 oriented Lorentzian metric on R1+1, show that, for every pairs of sequences
of points pn, qn ∈ R

n with qn ∈ I−(pn) (the past cone de�ned with respect to g) and
limn→+∞ qn = limn→+∞ pn = p, we have

spdiamI+(qn) ∩ I−(pn)
n→+∞−−−−→ 0.
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3. We will assume as given the following statement:
If (M′, g′) is a 1 + 1 dimensional and oriented C0 Lorentzian manifold and Ω ⊂ M′

is a domain in M′ with the property that Ω covers the past of ∂Ω, i.e. I−(p) ⊂ Ω
for any p ∈ ∂Ω, then the following holds: For any p ∈ ∂Ω, there exists a sequence

qn ∈ I−(p) and pn ∈ I+(p) such that qn, pn
n→+∞−−−−→ p and I+(qn) ∩ Ω ⊂ I−(pn).

Using that, show that (N , h) above is not extendible as a C0 spacetime beyond t = 0.

Solution. (a) Setting t̃(t, x) = t + f(x) (for a function f : (x0,+∞) → R to be determined), we
compute that

dt̃ = dt+ f ′dx

and, therefore

g = −
(
1− x0

x

)
dt2 +

(
1− x0

x

)−1
dx2

= −
(
1− x0

x

)
(dt̃− f ′dx)2 +

(
1− x0

x

)−1
dx2

= −
(
1− x0

x

)
dt̃2 + 2

(
1− x0

x

)
f ′(x)dt̃dx+

((
1− x0

x

)−1 −
(
1− x0

x

)
(f ′(x))2

)
dx2.

Therefore, de�ning f(x) so that f ′(x) =
(
1 − x0

x

)−1
near x = x0 (i.e. f(x) = log(x − x0) + h(x)

for some h(x) which is smooth and bounded at x = x0), we infer that the components of g in
the (t̃, x) coordinate chart can be smoothly extended (as functions) across x0. Let us denote with
g̃ such an extension on (x0 − ϵ,+∞) for some ϵ > 0. Identifying in the (t̃, x) coordinates M
with the domain R × (x0,+∞) and setting M̃ = R × (x0 − ϵ,+∞), we infer that the inclusion
R× (x0,+∞) ↪→ R× (x0 − ϵ,+∞) de�nes an isometric embedding (M, g) → (M̃, g̃).

(b) 1. The notion of spacelike diameter is purely geometric, i.e. it is preserved under isometric
transformations. Moreover, the bound that we need to show, namely

spdiam
(
I+(q) ∩ I−(p)

)
⩽

√
(p0 − q0)2 − (p1 − q1)2

is also invariant under isometric transformations, since the right hand side is simply the timelike
distance between p and q. Therefore, without loss of generality (by possibly applying a translation
and a boost on (R1+1, η), if necessary), we can assume that the points p and q have coordinates (in
the (t, x) Cartesian coordinate system)

p = (T, 0), q = (−T, 0)

for some T > 0, so that I+(q) ∩ I−(p) becomes the square

I+(q) ∩ I−(p) =
{
(t, x) : −T ⩽ t− x ⩽ T, −T ⩽ t+ x ⩽ T

}
.

We will show that any spacelike curve in the above set has length at most equal to 2T , thus proving
that the spacelike diameter of I+(q) ∩ I−(p) is at most 2T (in fact, it is equal to this value, since
the maximal length is achieved by the straight line segment connecting (0,−T ) to (0, T )). Let
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γ : [a, b] → I+(q)∩I−(p) be a spacelike curve. Since η = −dt2+dx2, the condition that γ is spacelike
translates to |γ̇x| > |γ̇t| ⩾ 0. We can therefore reparametrize γ so that γ̇x = 1 (i.e. parametrize it by
the x coordinate); recall that the length of the curve is invariant under reparametrizations. In this
case, γ(x) takes the form

γ(x) = (t(x), x), x0 ⩽ x ⩽ x1

for some x0 < x1 in [−T, T ], with the condition that γ is spacelike translating to
∣∣ dt
dx

∣∣ < 1. Thus, we
compute:

ℓ(γ) =

� x1

x0

√
η(γ̇, γ̇) dx =

� x1

x0

√
1−

( dt
dx

)2
dx ⩽

� x1

x0

dx = x1 − x0 ⩽ 2T.

Thus, we have shown that

spdiam
(
I+(q) ∩ I−(p)

)
⩽ 2T = timelike distance of p, q.

2. Without loss of generality, we will assume that we have �xed a global coordinate system (t, x)
on R1+1 such that p− (0, 0) and ∂t, ∂x are orthonormal at the point p, i.e.

g|p = −dt2 + dx2

(note that this can always be achieved by an a�ne change of coordinates). Since g is a C0 Lorentzian
metric, we infer that, near p = (0, 0), we the components of g behave as follows:

g = (−1 + o(1))dt2 + o(1)dtdx+ (1 + o(1))dx2. (14)

Moreover, since (R1+1, g) is time oriented, we can �x a globally de�ned future directed timelike vector
�eld V and we will assuming (by applying the transformation t → −t, if necessary) that, at the point
p, ∂t|p is future directed. For any ρ > 0, we will also denote with Bρ the coordinate (open) ball of
radius ρ around p, i.e.

Bρ
.
=

{
(t, x) :

√
t2 + x2 < ρ

}
.

Let δ0 > 0 be su�ciently small (depending only on the geometry of (R1+1, g) near p). For any
δ ∈ (0, δ0), if y, z ∈ Bδ with y lying in the past of z, then

I+(y) ∩ I−(z) ⊂ B√
δ. (15)

Informally, the above inclusion says that if y, z are both su�ciently close to p, then any future
directed timelike curve from y to z also has to stay close to p. We will show (15) below; for now, let
us assume that (15) holds, so that

spdiam
(
I+(y) ∩ I−(z)

)
⩽ spdiam

(
B√

δ

)
.

We will show that, if δ0 is small enough so that the o(1) terms in (14) are of size ⩽ 1
10

on B2
√
δ0 , we

have
spdiam

(
B√

δ

)
⩽ 4

√
δ, (16)
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from which it follows that limn→+∞ qn = limn→+∞ pn = p with qn ∈ I−(pn) ,then

spdiamI+(qn) ∩ I−(pn)
n→+∞−−−−→ 0.

In order to prove (16), we will argue similarly as for part 2: If γ is a spacelike curve B√
δ, then, in

view of (14), we have |γ̇x| > 1
2
|γ̇t| and hence γ can be parametrized by x, so that γ(x) = (t(x), x).

Then, we have (recall that we assumed that the o(1) terms in (14) are of size ⩽ 1
10

on B2
√
δ0):

ℓ(γ) =

� x1

x0

√
g(γ̇, γ̇) dx =

� x1

x0

√
−(1 + o(1))|t′|2 + o(1)t′ + (1 + o(1)) dx ⩽

� x1

x0

2 dx ⩽ 2 sup
(x0,t0),(x1,t1)∈B√

δ

∣∣x1−x0

∣∣ ⩽ 4
√
δ.

Thus, (16) holds.

Proof of (15). We will establish (15) by contradiction: Assume that there exists a future directed
timelike curve γ : [0, A] → R

1+1 such that γ(0) = y, γ(A) = z and γ(s0) /∈ B√
δ for some s0 ∈ (0, A).

Provided δ0 > 0 was chosen su�ciently small in terms of the geometry of (R1+1, g), the coordinate
ball B2

√
δ will lie inside the coordinate system (t, x) �xed above around p and that the o(1) terms in

(14) are of size ⩽ 1
10
. By reparametrizing the domain of γ if necessary, we can assume without loss

of generality that γ ∩ B√
δ is parametrized by t + const, i.e. that in γ ∩ B√

δ, we have γ̇t = 1 and,
thus, since γ is timelike (and |gαβ − ηαβ| ⩽ 1

10
), we must have

|γ̇x| < 3

2
on γ ∩B√

δ. (17)

Let s∗ ∈ (0, s0] be the largest number such that γ(s) ∈ B√
δ for all s ∈ [0, s∗) (note that s∗ ⩽ s0 since

γ(s0) /∈ B√
δ). Note that, by continuity, we should have γ(s∗) ∈ closB√

δ \B√
δ, so that

t2|γ(s∗) + x2|γ(s∗) = δ. (18)

In view of the fact that γ̇t = 1 for s ∈ [0, s∗), we have∣∣t|γ(s∗) − t|γ(0)
∣∣ = |s∗|.

In view of the fact that (17) holds for s ∈ [0, s∗), we have∣∣x|γ(s∗) − x|γ(0)
∣∣ ⩽ 3

2
|s∗|.

Those estimates, combined with the fact that γ(0) ∈ Bδ (and hence
∣∣t|γ(0)∣∣, ∣∣x|γ(0)∣∣ ⩽ δ) and δ ≪

1
100

√
δ (which holds if δ0 has �xed su�ciently small), imply, in view of (18), that

|s∗| ⩾
1

4

√
δ.

Let us now consider the curve γ̃ : [0, A] → R
1+1 such that

γ̃(s) = γ(s) for s ∈ [s∗, A]
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while γ|[0,sc] is contained in clos(B√
δ) and is de�ned (in the (t, x) coordinates) as the straight line

segment connecting γ(A) = z to γ(s∗), i.e.

γ̃(s) = (
s

s∗
t|γ(s∗) +

s∗ − s

s∗
t|γ(A),

s

s∗
x|γ(s∗) +

s∗ − s

s∗
x|γ(A)).

Note that γ̃ is closed, piecewise C1 and satis�es

˙̃γ(s) = γ̇(s) fors ∈ (s∗, A)

and (since |t(γ(A))|, |x(γ(A))| ⩽ δ ≪
√
δ)

˙̃γt(s) >
1

2
| ˙̃γx|(s) for s ∈ (0, s∗).

Let σ : [0, A] → R
1+1 be a smoothing out of γ̃ so that σ is still a closed curve, is pointwise δ-close

to γ̃ and satis�es
σ̇(s) = ˙̃γ(s) for s ∈ [s∗ + δ, A− δ]

(hence σ̇(s) is timelike and future directed in the above interval) and

σ̇(s) = γ̇(s)) >
1

3
| ˙̃γx|(s) ⩾ 0 for s ∈ [0, s∗ + δ] ∪ [A− δ, A]. (19)

Note that σ might still have self-intersections. We, can however, remove those self-intersections:
If s(0) < s(1) ∈ (0, A) are two points such that σ(s(0)) = σ(s(1)), then we can remove the interval
(s(0), s(1)) from the domain of σ and the remaining curve will still be closed, continuous and piecewise
C1; we can then smooth-out again this curve, and the tangent to the new curve will still satisfy the
above estimates (if σ̇(s) was originally timelike and future directed near s = s0, the smoothing will
retain this property, since the set of future directed timelike vectors at a point forms an open convex
cone; similarly for the condition (19)). Thus, after repeating the above �surgery� procedure a �nite
number of times, we are left with a simple closed curve σ.

We will now show that the existence of such a simple closed curve leads to a contradiction in
view of the fact that g admits a global timelike vector V , based on a topological argument (which
uses the fact that the background manifold is R2). Note that the above conditions on σ̇ and the fact
that V is timelike and future directed (and hence, V t > 9

10
|V x| ⩾ 0 on B2

√
δ) imply that

λV |σ(s) + λ′σ̇(s) ̸= 0 for all s ∈ [0, A] and λ, λ′ ⩾ 0 with (λ, λ′) ̸= (0, 0)

(for the region s ∈ [s∗+δ, A−δ], the above follows from the fact that both vectors are future directed
and timelike; for s ∈ [0, s∗ + δ] ∪ [A − δ, A], just check the t-components of V and σ̇ are positive).
Thus, if X is an arbitrary extension of the vector �eld σ̇ to an open neighborhood Uσ of σ (such an
extension exists because σ was assumed to not have self-intersections) then, if Vσ is an even smaller
open neighborhood of σ (su�ciently small in terms of the precise form of σ, the extension X and the
vector �eld V ) and f : R1+1 → [0, 1] is a smooth function such that

f |σ = 1 and f = 0 on R
1+1 \ Vσ,
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the vector �eld
W = f ·X + (1− f) · V

is nowhere 0 on R1+1 and is tangent to the simple closed curve σ. However, such a curve σ bounds
a closed topological disc D in R2 (by the Jordan curve theorem); this is a contradiction, since any
smooth vector �eld on D which is tangent to ∂D must vanish at least once in D (otherwise, if we
glued two such copies of D along ∂D we would get a non-vanishing continuous vector �eld on S2).

3. Let us �x a time orientation on (N , h) so that −∂t is future directed (so that t = 0 lies �to the
future� ofN = (0,+∞)t×S1

θ). Assume, for the sake of contradiction, that (N , h) admits an extension
as a C0 Lorentzian manifold beyond t = 0, i.e. that there exists a C0 Lorentzian manifold (N ′, h′)
and an open domain Ω ⊂ N ′ with Ω ̸= N ′ such that (N , h) can be isometrically identi�ed with
(Ω, h′) and, under this identi�cation, the function t on N (i.e. on Ω) can be continuously extended
up to ∂Ω with t|∂Ω = 0. Note that, for any c > 0, we have that the level set {t = c} is entirely
contained in Ω (i.e. N ), it is a spacelike hypersurface and, in view of the explicit form of h, we have
that, for any p ∈ {t = c}, the past of p satis�es I−(p) ⊂ {t > c}. By continuity of h′ across ∂Ω, we
infer that the tangent space of ∂Ω = {t = 0} at every point is either spacelike or null (as the limit of
spacelike hypersurfaces) and, for any p ∈ ∂Ω, we have I−(p) ⊆ {t > 0} = Ω (note that the limitting
process at �rst appears to only guarantee that I−(p) ⊂ closΩ; however, I−(p) ∩ ∂Ω = ∅, since I−(p)
is an open set of N ′ and hence, if it contains a point on ∂Ω, it should also intersect N ′ \ Ω). Thus,
Ω covers the past of ∂Ω.

Let p ∈ ∂Ω. There exists a sequence qn ∈ I−(p) and pn ∈ I+(p) such that qn, pn
n→+∞−−−−→ p and

I+(qn)∩Ω ⊂ I−(pn) (see the statement of the exercise). Since (N , h′) is a C0 Lorentzian manifold and
p has a small neighborhood di�eomorphic to R2 (note that any su�ciently small neighborhood of a
point in a C0 Lorentzian manifold is time orientable; in this case, we can choose the time orientation
that agrees with the one we have �xed on Ω), from part 2 above we have that

spdiam
(
I+(qn) ∩ Ω

)
⊆ spdiam

(
I+(qn) ∩ I−(pn)

) n→∞−−−→ 0. (20)

However, we can explicitly compute the spacelike diameter of the set I+(qn)∩Ω, since this lies entirely
inside Ω (i.e. (N , h)): Assuming without loss of generality (by shifting, if necessary, the θ coordinate
in the S1 factor of N) that qn = (tn, θn)

.
= (tn, 0), we can compute from the explicit form of h that

the two future directed null curves emanating from qn (and which mark the boundary of I+(qn))
take the form γ±(t) = (t, θ±(t)), with

θ′±(t) = ±t, θ±(tn) = 0

(so that θ±(t) = ±1
2
(t − tn)

2). In particular, I+(qn) contains the spacelike line segments (for s ∈
(0, tn]):

γ(n)
s =

{
(t, θ) ∈ N : t = s, −1

2
(s− tn)

2 ⩽ θ ⩽
1

2
(s− tn)

2
}
.

Note that

lim
s→0+

ℓ(γ(n)
s ) = lim

s→0+

� 1
2
(s−tn)2

− 1
2
(s−tn)2

1√
s
dθ = lim

s→0+

(s− tn)
2

√
s

= +∞
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and, therefore,
spdiam

(
I+(qn) ∩ Ω

)
= +∞,

which is a contradiction in view of (20).
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